When it Rains it Pours:
Atmospheric Rivers, rivers in the sky
2016-2017 Water Year-Drought to Flood

Science of Teaching Atmospheric Rivers

Intervention: Real-time videos & simulations to optimize outcomes achievement

Lynn Sullivan, M.S., LEED Green Associate
Lecturer, Department of Environmental Engineering
School of Engineering
University of California, Merced
6/9/17
Incorporating real-time video or simulation events: Keep the videos short and frequent (Weller, 1996; Smetana et al, 2012; Lang, 2016) effectively involve students in authentic scientific practices.

The understanding the basis of these events incorporates connections between several chapters of understanding. (Perry, 1983; Lang, 2016)

Instruction of the tasks of understanding concepts requires practice activities. (Tomlinson, 2014; Lang, 2016)

My raison d'être is that I wish that the student understand the events as they unfold to them. So that they might embrace them for future decision making.
These “rivers in the sky” are a world wide atmospheric events.

ARs are approximately 250–375 miles wide on average.

Scientists’ improved understanding of ARs has come from roughly a decade of scientific studies that use observations from satellites, radar and aircraft as well as the latest numerical weather models. More studies are underway, including a 2015 scientific mission that added data from instruments aboard a NOAA ship.
Hypothesis: Introduction of real-time short videos and in-class exercises that focus on practice activities increases scores on exams and communication between students.
This atmospheric River in 2010 brought 16 inches of rain and 17 feet of snow to the Sierra Nevada Mountains.

- Fills CA reservoirs
- Brings cycles of wet and dry
- Causes CA floods
- Sustains wetlands
- Breaches levees
- Causes of catastrophes
- Penetrates inland
- Debris Flows

Can be forecasted 3-5 days in advance.

Why are Atmospheric Rivers important to California? How do they affect you? What lifestyle changes should you make for us all to achieve sustainably in our society?
Intervention
Real-Time Videos and Practice Activities

- Delivery of short real-time videos during the course of the semester to optimize the outcome achievement
- In-class exercises to compliment topic, in this case the water cycle, ocean currents, air circulation patterns on Earth and the Coriolis Effect
- Group-to-group discussions regarding Atmospheric Rivers implications and importance to California water supply and to the student. Are there any solutions?
Tropical Rainforests at the equator

Evapotranspiration is very important. Remember the water cycle.

Each canopy tree can release about 200 gallons (760 liters) of water each year.

To understand connections between chapters references, quick and short, are made back to material that contained information regarding water cycles, nutrient cycles, ocean circulation patterns, and idealized air circulation patterns.
Ocean currents form patterns across the globe

• Driven by density differences, heating and cooling, gravity, and wind
• Influence global climate and El Niño and La Niña

An in-class exercise on ocean circulation compliments the understanding Atmospheric Rivers source and circulation of convectional energy on Earth. (Connections, repeating information and practice Lang, 2016)
The Earth rotates west to the east (counter clockwise).

Seems complex, it is essential to understanding the concept of how moisture and heat transported across the globe.

Numerous short and sweet videos are delivered to understand this concept.
Instruction of the tasks of understanding concepts requires practice activities. (Lang, 2016)
Moisture plume of late Jan early Feb 2017. Water is carried in winds aloft for thousands of miles, this is a global event. (Daniel Swain, 2017)
Instruction of the tasks of understanding concepts requires practice activities (Lang, 2016).
These quiet students in the back of the class requested this additional exercise. Be responsive to their curiosity and guidance for the students’ success.
Methods

Qualitative Data:
- Online Survey (SATAL) outcomes & activities

Quantitative Data:
- Exam Scores on specific question for two AYs. (re-grading a specific final exam question)
Results

How well do you agree with the following statements regarding the ENVE 10 course outcomes? "My skills to ... have become much stronger"

These questions are duplicated from the syllabus.

Reinforcement of outcomes during the process of delivery of projects is essential.
What activities have led you to the outcome achievement. Please identify the...

- Watching short videos as a portion of lecture
- Review of Atmospheric Rivers/Water treatment Session

- Most Helpful
- Least Helpful

S 2017
Students’ comments on short videos

• I am visual learner, I can see tangible effects of what we are learning impacted my learning experience.

• The videos were the most helpful to my learning because I heard about topics in different perspectives.

• Videos ... offer breaks in the lecture ... visuals help me remember the topics. (x3)

• I am a very visual learner and videos and diagrams help me understand the content better. (x2)

• Really interesting and fun to watch.

• The videos multiple explanations, so if not understood in the lecture, it could be reviewed in a video.
Students’ comments on in-class diagrams

• diagrams help me understand
• helped me understand instead of just reading from the book
• I learn best when I get to learn by interacting with the lesson.
• They helped me learn the content best by visualizing diagrams
• I am able to work with other classmates and receive their input on the topic.
• Hands on activities usually help me a lot with learning. (x2)
Examination of students scores regarding understanding of Atmospheric Rivers
S 2017, F2016 with and F 2015, S2016 without in-class exercises
wrong - partial credit - correct

Note: S 2017 = 9
Discussion

1st statistical analysis \(p=0.064 \) ambiguous. note: \(p \) value smaller than 0.05 is significant

2nd evaluation evaluated incorrect vs correct and accounted for a continuity correction \(p=0.029 \) which indicated that the in-class activity was beneficial to student’s success

3rd analysis was a proportional test 49\% \(p=0.075 \) 14\% incorrect vs 35\% correct which offered a practicality significance perhaps as a consequence of the sample size
Moreover,
Based on the students’ responses on the questionnaire, students found the activities engaging.

The diagram activities seemed to relieve anxiety of understanding materials that might be on the exam.

Students had a chance to discuss materials with their peers. The instructor had additional one-to-one time to review and check students’ work for errors.

The students displayed more sophisticated reasoning
Conclusions

Although the statistical difference in scores appeared ambiguous, students’ success was evidenced by their grades and engagement with activities.

Students developed understanding of the subject and weather models during the course of the semester. It was evident by their insight questions during activities and their applications to exam questions.

Students would request real times videos since they helped their understanding of complex subjects.
Observations

Students asked more questions during delivery of the in-class exercise than in the past during the lecture covering the same material.

Students stepped outside the class and applied information to other courses. Students that stayed after class and further explored subject matter later thanked me. Reporting scores of 97% on their class essay in Core with bright smiles.

Students have long lasting memories of their experiences when material is delivered in this manner. Students from previous years have returned to refresh their memory for their master’s thesis.
Changes to the implementation of the intervention

- Develop homework assignment prior to the in-class exercise
- Should an advanced review be developed to connect the variables of Atmospheric Rivers and indicate specific chapters covered that influence Atmospheric Rivers
- A question remains should I present the material again as I would for the public for this specific question? Or allow the student to synthesize the material on their own.
- In parting-How many Atmospheric Rivers does it take to break the drought of the last 5 years?
Distribution of Landfalling Atmospheric Rivers on the U.S. West Coast
(From 1 Oct 2016 to 31 March 2017)

<table>
<thead>
<tr>
<th>AR Strength</th>
<th>AR Count*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>11</td>
</tr>
<tr>
<td>Moderate</td>
<td>20</td>
</tr>
<tr>
<td>Strong</td>
<td>12</td>
</tr>
<tr>
<td>Extreme</td>
<td>3</td>
</tr>
</tbody>
</table>

- 45 Atmospheric Rivers have made landfall on the West Coast thus far during the 2017 water year (1 Oct. – 31 March 2017)
- This is much greater than normal
- 1/3 of the landfalling ARs have been “strong” or “extreme”

Ralph/CW3E AR Strength Scale
- Weak: IVT=250–500 kg m\(^{-1}\) s\(^{-1}\)
- Moderate: IVT=500–750 kg m\(^{-1}\) s\(^{-1}\)
- Strong: IVT=750–1000 kg m\(^{-1}\) s\(^{-1}\)
- Extreme: IVT>1000 kg m\(^{-1}\) s\(^{-1}\)

*Radio sondes at Bodega Bay, CA indicated the 10–11 Jan AR was strong (noted as moderate based on GFS analysis data) and 7–8 Feb AR was extreme (noted as strong)
Don’t forget the groundwater aquifers? What is their recharge rate?

Are our human activities sustainable for future generations?

Questions?

What’s next on the agenda?

1) Get trained to deliver a project that Students are human subjects
2) Start out the year with all releases signed by the students
3) Develop additional in-class activities
4) Add additional data – ratio testing between semesters could be done
5) Find more references
6) Present a poster to the American Geophysical Union Dec 2018